Groups in which every subgroup has finite index in its Frattini closure

نویسندگان

  • D. ‎Imperatore Università di Napoli "Federico II" Dipartimento di Matematica e Applicazioni
چکیده مقاله:

‎In 1970‎, ‎Menegazzo [Gruppi nei quali ogni sottogruppo e intersezione di sottogruppi massimali‎, ‎ Atti Accad‎. ‎Naz‎. ‎Lincei Rend‎. ‎Cl‎. ‎Sci‎. ‎Fis‎. ‎Mat‎. ‎Natur. 48 (1970)‎, ‎559--562.] gave a complete description of the structure of soluble $IM$-groups‎, ‎i.e.‎, ‎groups in which every subgroup can be obtained as intersection of maximal subgroups‎. ‎A group $G$ is said to have the $FM$-property if every subgroup of $G$ has finite index in the intersection $hat X$ of all maximal subgroups of $G$ containing $X$‎. ‎The behaviour of (generalized) soluble $FM$-groups is studied in this paper‎. ‎Among other results‎, ‎it is proved that if~$G$ is a (generalized) soluble group for which there exists a positive integer $k$ such that $|hat X:X|leq k$ for each subgroup $X$‎, ‎then $G$ is finite-by-$IM$-by-finite‎, ‎i.e.‎, ‎$G$ contains a finite normal subgroup $N$ such that $G/N$ is a finite extension of an $IM$-group‎.

منابع مشابه

groups in which every subgroup has finite index in its frattini closure

‎in 1970‎, ‎menegazzo [gruppi nei quali ogni sottogruppo e intersezione di sottogruppi massimali‎, ‎ atti accad‎. ‎naz‎. ‎lincei rend‎. ‎cl‎. ‎sci‎. ‎fis‎. ‎mat‎. ‎natur. 48 (1970)‎, ‎559--562.] gave a complete description of the structure of soluble $im$-groups‎, ‎i.e.‎, ‎groups in which every subgroup can be obtained as intersection of maximal subgroups‎. ‎a group $g$ is said to have the $fm$...

متن کامل

On central Frattini extensions of finite groups

An extension of a group A by a group G is thought of here simply as a group H containing A as a normal subgroup with quotient H/A isomorphic to G. It is called a central Frattini extension if A is contained in the intersection of the centre and the Frattini subgroup of H . The result of the paper is that, given a finite abelian A and finite G, there exists a central Frattini extension of A by G...

متن کامل

A Generalized Frattini Subgroup of a Finite Group

For a finite group G and an arbitrary prime p, let S (G) denote the P intersection of all maximal subgroups M of G such that [G:M] is both composite and not divisible by p; if no such M exists we set S (G) G. Some properties of P G are considered involving S (G). In particular, we obtain a characterization of P G when each M in the definition of S (G) is nilpotent. P

متن کامل

On $m^{th}$-autocommutator subgroup of finite abelian groups

Let $G$ be a group and $Aut(G)$ be the group of automorphisms of‎ ‎$G$‎. ‎For any natural‎ number $m$‎, ‎the $m^{th}$-autocommutator subgroup of $G$ is defined‎ ‎as‎: ‎$$K_{m} (G)=langle[g,alpha_{1},ldots,alpha_{m}] |gin G‎,‎alpha_{1},ldots,alpha_{m}in Aut(G)rangle.$$‎ ‎In this paper‎, ‎we obtain the $m^{th}$-autocommutator subgroup of‎ ‎all finite abelian groups‎.

متن کامل

Relative non-Normal Graphs of a Subgroup of Finite Groups

Let G be a finite group and H,K be two subgroups of G. We introduce the relative non-normal graph of K with respect to H , denoted by NH,K, which is a bipartite graph with vertex sets HHK and KNK(H) and two vertices x ∈ H HK and y ∈ K NK(H) are adjacent if xy / ∈ H, where HK =Tk∈K Hk and NK(H) = {k ∈ K : Hk = H}. We determined some numerical invariants and state that when this graph is planar or...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 40  شماره 5

صفحات  1213- 1226

تاریخ انتشار 2014-10-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023